
Proof. Since ~(z)6ExpRc~)(Czn), there exists a number r < R(~) such thatltt(z)I~</14exprlzl. 
Then, as follows from Cauchy's formula, for all ~ = (~i, .... C~n) andz6 Cn 

i D~P~ (~)i ~< M~ i ~ ~,'~' cxp ~ I ~ I, ( 4 .2  ) 

where M% > 0 is a constant. 

From this it follows that 

A (D) u (z)~ ~ (O -- kI)~ [eZ~ (z)] = ~ e x~ a= (~) D~a (z) ------ X eX~* x (z), 

where ~z (z)6Exp;c~)(Cfl), since by inequality (4.2) 

I*,~ (z) J4  M~ (X) t l ~ ],z~ rill exp r l z I - - M ~  exp r j z l 
l 

[we r e c a l l  t h a t  r < R(X)] .  T h i s  means t h a t  A(D)tt(z)EExp,(C~n). 

The continuity of the mapping (*) can be established by analogous and only a little 
more complex arguments. The theorem is proved. 

From the theorem proved it follows that the collection of p/d operators A(D) with sym- 
bols A(~)CCY(~2) and domain Exp~(Cz n) form an algebra (the ring operation is composition). We 
denote this algebra by ~(~). Further, let s be the algebra of analytic functions in the 
domain ~. 

The following conclusion is a corollary of Theorem 4. I. 

Conclusion~ The algebraic isomorphism 

defined by the correspondence A(D) ~-+ A(~) holds. Moreover, if together with A(~) the func- 
tion A-~(~) is also analytic in ~, then 

_!_~ oA = A ( D ) o ~  = z, (o) A(D) 

where I is the identity operator. 

Ex_~les. i. Let u(z) = expkz and let A(r be analytic in a neighborhood of the point 
= ~. Then A(D) exp Xz = A(~) exp Xzo 

2, Let n = !, A(~)=i/~, ~2----C~\L, where L is some ray issuing from the origin. Then 

where ~z.(z)s and R(I) is the distance from the point i to the ray L. The p/d opera- 
tor I/D is the inverse operator to the operator of differentiation. Thus, to each function 
~(z)~Exps(Cz ~) there is assigned the function 

~ (z) = ~ e ~z ~ ( -  1)m Dm~z (Z), D L m+~ 
& m~O 

which is the unique primitive function of u(z) which also belongs to the space Exp~(Cz"). We 
call this primitive "natural" and write 

/ 
(z) = nat 3 ~ (z) dz. 

D 

5. Correctness of the Definition of a P/D Operator 

Let ~ be a Runge domain. We shall show that the action of a p/d operator A(D) does not 
depend on the representation of a function u(z)6Exps(Cz n) in the form of a sum 

u (z) = ~ e~ ~ (z), (5. i ) 

where ~(z)~Expm~) (C2) (see Definition 4. i). 
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form 
Indeed, suppose that in addition to (5.1) the function u(z) can be represented in the 

u (z) = ~ e~"G (z), (5 .2)  

whe~ep6fl, just as ~, runs through a finite set of values. 

To prove that A(D)u(z) is well defined we use the multidimensional generalization of 
the Borel inversion formula (see, for example, [35]). Namely, if 

u ( z ) =  2 u~z~' z~C~, 
I~1=0 

is an entire function of exponential type r = (r~ ..... rn), then 

1 t t ( z ) = ~  f Bu(~)e~tdG zO.C% 
re 

where r e is the hull of the polycylinder U~={~:l~]l<ri-~ , e>0, j=l ..... n}, and 

o~ /A(z 
BU (~)=  I ~z+---T (c~-i- 1 = ( a ~ +  1 . . . . .  a n + l ) ) .  

In correspondence with this formula and the representation (5.1) 

u ( z ) ~ - ~ e ~ . , r !  B~p~(~)ez;d~. ( 5 . 3 )  

where B~ (~)is the function associated in the Borel sense with the function ~(~), and F~,~ 
is the hull of the polycylinder U~,~-~-{~:!~ll<r(%)~-e, e>0, ]=I ..... r We here choose the 
number g > 0 such that translation of the hull Fe, ~ by the vector X lies strictly inside ft. 
Then in correspondence with Definition 4.1 we obviously obtain 

~ ~ 1 X e~. z A (~,-l- :) B~a (:) ezr~l:. ( 5 . 4 )  A (D) tt (z) = a= (;~) (D --;~l)~'e ~ ~ Bq~ (;) e'~-a; --(2ni)n 
k [~ l - -O  re , ;~  , h r ,~, 

Similarly, for the representation (5.2) we obtain the formulas 

1 X e~ ; B~  (;) e~;d;, zEC ~, (5.5) 
u (z) = ~ ~ r~,~ 

and 

1 X e~" f A (~+ ~) B ~  (~) e~:d~ (5.6) A (D) u (z) --  (2~0~ ~ r~,~ 

(the notation is clear). 

To prove that the values of A(D)u(z) defined by formulas (5.4) and (5.6) coincide we 
consider the analytic functionals 

def 1 -- 

L(v)--=-~ Z S q3(~.-l-~)B$~(~)cl~ 

and : : 

aef 1 

where v(~)6~(f~) is an arbitrary function. 

Formulas (5.3), (5.5) mean that for any zEC n the equality L(ezB)-~-M(e z;) holds, whence 
it follows that the functionals L(v) and M(v) coincide on the set of all linear combinations 
of exponentials. Since ~ is a Runge domain, it follows that L(v) = M(v) for any function 
v(~)~g~(fl). In particular, setting v(~)=A(~)e ~B, we obtain the equality 

L (A (~) e~:)--~M (A (~) e~:). 
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which by formulas (5.4) and (5.6) means that the definition of A(D)u(z) does not depend on 
the form of representing u(z). This is what was required. 

In conclusion we shall show that the Runge condition is essential. 

Counterexample. Let ~-~-CI~{0}, A (D)----I/D. Obviously, the symbol A(~) = I/~ is analytic 
in ~. We shall show that the operator A(D) is not single-valued in the space Expa(C~). In- 
deed, for any ~ ~ 0 we have by Cauchy's formula 

e }  z - - ~  . 1 C e n z  _, 

and hence, breaking the contour of integration into N sufficiently small parts, we find that 

N N 

]=0 ~i 7=0 

where 

1 
~j (z) = ~ J ~_~ d~. 

r] 

Obviously, rj can be taken so small that ]~](z)]:.<D1exprlz[, where r < Ill, M > 0 are constants. 
Thus, formula (5.7) gives a representation of the fucntion e xz in the space Expn(C1z) in the 
form (5.1). 

In correspondence with the definition of A(D)u(z) we have, on the one hand, [I/D] exp 
kz = X-lexpXz. On the other hand, proceeding from (5.7), we find that 

__~ eZz_ 1 e rlZ d rl 
- -  2zi 0 =~-~(exp~z--1). n (n--~) Ini=~ 

Thus, in the space Expa(C~)if ~ is not a Runge domain the operator A(D), generally speaking, 
may be multivalued. 

In conclusion we note that an analogous representation holds for z n, n = 0, i,~ i.e., 
z=EExpa (C~), a=C: \{0} : ,  and [I/Dlz.=z~+:/(n_l-1). 

6. E x p o n e n t i a l  F u n c t i o n a l s  

. C n D e f i n i t i o n  6 1. A c o n t i n u o u s  l i n e a r  f u n c t i o n a l  on t h e  s p a c e  E x p a ( z )  i s  c a l l e d  an expo-  
n e n t i a l  f u n c t i o n a l .  

The s p a c e  o f  a l l  e x p o n e n t i a l  f u n c t i o n a l  we d e n o t e  by Exp~(C~) and c a l l  t h e  space  o f  ex-  
p o n e n t i a l  f u n c t i o n a l s  a s s o c i a t e d  w i t h  t h e  domain a.  

Ex_~le 1. 6(z) is obviously an exponential functional for any domain a. 

Example 2._ Let A(~)Eg?(Q). Then h(z)=A(--D)8(z) (--D=(--0/aZl ..... --a/Ozn)) is an expo- 
n n nential functional acting on v(z)@ xps(Cjaccording to the formula 

def 

( h ( z ) , v ( z ) ) - -  ( A ( - - D )  6 ( z ) , v ( z ) ) _ - - < 6 ( z ) , A ( O ) v ( z ) ) .  

We shall show that Example 2 exhausts all exponential functionals. 

THEOREM 6. i. Let h(z)EExp'~ (C~). Then there exists a unique function ~4 (~)EO(~) such that 
h(z) = A(-D)6(z). 

Proof. We set A(~)------(/z(Z), exp ~Z >, ~G~2. Obviously, A (~)66~(~2), and it is clear that 
aef 

< A (--D)g(z), exp ;z > ----- < 8(z), A (O)exp ;z ) -----A (;), 

i.e., the action of h(z) coincides with the action of the functional A(-D)6(z) on functions 
exp ;z, ~G~2. 

From the density lemma (Sec. 3) we conclude that the functionals h(z) and A(-D)6(z) are 
equal as exponential functionals. The uniqueness of this representation is obvious. The 
theorem is proved. 

Example 3. We consider the exponential functional ~(z)----exp (aD 2) 8 (z),  where a 6 C n is a 
parameter, and aD==-g~D~-~ ...@gnD~. It can be shown (el. [ii, p. ii0]) that for any function 
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