Proof. Since $\varphi_{\lambda}(z) \in \operatorname{Exp}_{R(\lambda)}\left(C_{z}^{n}\right)$, there exists a number $\mathrm{r}<\mathrm{R}(\lambda)$ such that $|a(z)| \leqslant M \exp r|z|$. Then, as follows from Cauchy's formula, for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $z \in C^{n}$

$$
\begin{equation*}
\left|D^{\alpha} \varphi_{\lambda}(z)\right| \leqslant M_{\lambda}|\alpha|^{n / 2} r^{|\alpha|} \exp r|z|, \tag{4.2}
\end{equation*}
$$

where $M_{\lambda}>0$ is a constant.
From this it follows that

$$
A(D) u(z) \equiv \sum_{\lambda}\left(\sum_{|\alpha|=0}^{\infty} a_{\alpha \alpha}(\lambda)(D-\lambda I)^{\alpha}\left[e^{\lambda_{z} z} \varphi_{\lambda}(z)\right]\right)=\sum_{\lambda_{0}} e^{\lambda z}\left(\sum_{\mid \alpha j=0}^{\infty} a_{\alpha}(\lambda) D^{\alpha} \varphi_{\lambda_{k}}(z)\right) \equiv \sum_{\lambda_{0}} e^{\lambda z} \psi_{\lambda}(z)
$$

where $\psi_{\lambda_{n}}(z) \in \operatorname{Exp}_{R(\lambda)}\left(\mathrm{C}_{2}^{n}\right)$, since by inequality (4.2)

$$
\left|\psi_{\lambda}(z)\right| \leqslant M_{\lambda}\left(\sum_{|\alpha|=0}^{\infty}\left|a_{\alpha}(\lambda)\right||\alpha|^{n / 2} r^{|\alpha|}\right) \exp r|z| \equiv M_{1 \lambda} \exp r|z|
$$

[we recall that $r<R(\lambda)$ ]. This means that $A(D) \mu(z) \in \operatorname{Exp}_{\Omega}\left(C_{z}{ }^{n}\right)$.
The continuity of the mapping ( $*$ ) can be established by analogous and only a little more complex arguments. The theorem is proved.

From the theorem proved it follows that the collection of $p / d$ operators $A(D)$ with symbols $A(G) \in O^{\prime}(\Omega)$ and domain $\operatorname{Exps}_{\Omega}\left(\mathbf{C}_{z}{ }^{n}\right)$ form an algebra (the ring operation is composition). We denote this algebra by $\mathscr{A}(\Omega)$. Further, let $\mathcal{O}(\Omega)$ be the algebra of analytic functions in the domain $\Omega$.

The following conclusion is a corollary of Theorem 4.1.
Conclusion. The algebraic isomorphism

$$
\mathfrak{H}(\Omega) \leftrightarrow O(\Omega)
$$

defined by the correspondence $A(D) \leftrightarrow A(\zeta)$ holds. Moreover, if together with $A(\zeta)$ the function $A^{-1}(\zeta)$ is also analytic in $\Omega$, then

$$
\frac{I}{A(D)} \circ A(D)=A(D) \circ \frac{I}{A(D)}=I
$$

where $I$ is the identity operator.
Examples. 1. Let $u(z)=\exp \lambda z$ and let $A(\zeta)$ be analytic in a neighborhood of the point $\zeta=\lambda . \quad$ Then $A(D) \exp \lambda z=A(\lambda) \exp \lambda z$.
2. Let $\mathrm{n}=1, A(\zeta)=1 / \zeta, \Omega=\mathrm{C}^{1} \backslash L$, where $L$ is some ray issuing from the origin. Then

$$
\operatorname{Exp}_{\Omega}\left(\mathrm{C}_{z}^{1}\right)=\left\{u(z): u(z)=\sum_{\lambda} e^{\lambda z} \varphi_{\lambda}(z)\right\}
$$

where $P_{\lambda}(z) \operatorname{Exp}_{R(\lambda)}\left(C_{z}{ }^{1}\right)$, and $R(\lambda)$ is the distance from the point $\lambda$ to the ray $L$. The p/d operator $I / D$ is the inverse operator to the operator of differentiation. Thus, to each function $\ddot{Z}(z) \in \operatorname{Exp}_{s}\left(\mathbb{C}_{z}\right)$ there is assigned the function

$$
\frac{l}{D} u(z)=\sum_{\lambda} e^{\lambda z} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{\lambda^{m+1}} D^{m \varphi_{\lambda}}(z)
$$

which is the unique primitive function of $u(z)$ which also belongs to the space $\operatorname{Exp}_{\Omega}\left(C_{z}{ }^{n}\right)$. We call this primitive "natural" and write

$$
\frac{I}{D} u(z)=\operatorname{nat} \int u(z) d z
$$

## 5. Correctness of the Definition of a P/D Operator

Let $\Omega$ be a Runge domain. We shall show that the action of a $p / d$ operator $A(D)$ does not depend on the representation of a function $u(z) \in \operatorname{Exp}_{\Omega}\left(C_{z}{ }^{r}\right)$ in the form of a sum

$$
\begin{equation*}
u(z)=\sum_{\lambda} e^{\lambda z} \varphi_{\lambda}(z) \tag{5.1}
\end{equation*}
$$

where $\varphi_{\lambda}(z) \operatorname{EExp}_{R(\lambda)}\left(\mathrm{C}_{z}^{n}\right)$ (see Definition 4.1).

Indeed, suppose that in addition to (5.1) the function $u(z)$ can be represented in the form

$$
\begin{equation*}
u(z)=\sum_{\mu} e^{\mu z \hat{\varphi}_{\mu}(z)} \tag{5.2}
\end{equation*}
$$

where $\mu \mathrm{G} \Omega$, just as $\lambda \mathrm{E} \Omega$, runs through a finite set of values.
To prove that $A(D) u(z)$ is well defined we use the multidimensional generalization of the Borel inversion formula (see, for example, [35]). Namely, if

$$
u(z)=\sum_{|\alpha|=0}^{\infty} u_{\alpha} z^{\alpha}, \quad z \mathrm{EC}^{n}
$$

is an entire function of exponential type $r=\left(r_{1}, \ldots, r_{n}\right)$, then

$$
u(z)=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma_{\varepsilon}} B u(\zeta) e^{z \succeq} d \zeta, \quad z \in \mathbf{C}^{n}
$$

where $\Gamma_{\varepsilon}$ is the hull of the polycylinder $U_{\varepsilon}=\left\{\xi_{:}\left|\zeta_{j}\right|<r_{j}+\varepsilon, \varepsilon>0, j=1, \ldots, n\right\}$, and

$$
B u(\zeta)=\sum_{|\alpha|=0}^{\infty} \frac{\alpha!u_{\alpha}}{\zeta^{\alpha+1}} \quad\left(\alpha+1=\left(\alpha_{1}+1, \ldots, \alpha_{n}+1\right)\right) .
$$

In correspondence with this formula and the representation (5.1)

$$
\begin{equation*}
u(z)=\frac{1}{(2 \pi i)^{n}} \sum_{\lambda} e^{\lambda, z} \int_{\mathbb{T}_{\varepsilon, \lambda}} B \varphi_{\lambda}(\zeta) e^{z \zeta} d \zeta \tag{5.3}
\end{equation*}
$$

where $B \varphi_{\lambda}(\zeta)$ is the function associated in the Borel sense with the function $\varphi_{\lambda}(\zeta)$, and $\Gamma_{\varepsilon, \lambda}$ is the hull of the polycylinder $U_{\varepsilon, \lambda}=\left\{\zeta:\left|\zeta_{j}\right|<r(\lambda)+\varepsilon, \varepsilon>0, j=1, \ldots, n\right\}$. We here choose the number $\varepsilon>0$ such that translation of the hull $\Gamma_{\varepsilon}, \lambda$ by the vector $\lambda$ lies strictly inside $\Omega$. Then in correspondence with Definition 4.1 we obviously obtain

$$
\begin{equation*}
A(D) u(z)=\frac{1}{(2 \pi i)^{n}} \sum_{\lambda}\left(\sum_{|\alpha|=0}^{\infty} a_{\alpha}(\lambda)(D-\lambda I)^{\alpha} e^{\lambda z} \int_{\Gamma_{\varepsilon, \lambda}} B \varphi_{\lambda}(\zeta) e^{z \zeta} d \zeta\right)=\frac{1}{(2 \pi i)^{n}} \sum_{\lambda} e^{\lambda z} \int_{\Gamma_{\varepsilon, \lambda}} A(\lambda+\zeta) B \varphi_{\lambda}(\zeta) e^{z \zeta} d \zeta \tag{5.4}
\end{equation*}
$$

Similarly, for the representation (5.2) we obtain the formulas

$$
\begin{equation*}
u(z)=\frac{1}{(2 \pi i)^{n}} \sum_{\mu} e^{\mu z} \int_{\Gamma_{\varepsilon, \mu}} B \hat{\varphi}_{\mu}(\zeta) e^{z \varepsilon} d \zeta, \quad z \in \mathbf{C}^{n}, \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A(D) u(z)=\frac{1}{(2 \pi i)^{n}} \sum_{\mu} e^{\mu z} \int_{\Gamma_{\varepsilon, \mu}} A(\mu+\zeta) B \hat{\varphi}_{\mu}(\zeta) e^{z \zeta} d \zeta \tag{5.6}
\end{equation*}
$$

(the notation is clear).
To prove that the values of $A(D) u(z)$ defined by formulas (5.4) and (5.6) coincide we consider the analytic functionals

$$
L(\mathcal{v}) \stackrel{\text { def }}{=} \frac{1}{(2 \pi i)^{n}} \sum_{\lambda} \int_{\Gamma_{\varepsilon, \lambda}} v(\lambda+\zeta) B \varphi_{\lambda}(\zeta) d \zeta
$$

and

$$
M(v) \stackrel{\text { def }}{=} \frac{1}{(2 \pi i)^{n}} \sum_{\mu} \int_{\Gamma_{\varepsilon, \mu}} v(\mu+\zeta) B \hat{\varphi}_{\mu}(\zeta) d \zeta
$$

where $v(\zeta) \in O^{\prime}(\Omega)$ is an arbitrary function.
Formulas (5.3), (5.5) mean that for any $z \mathrm{EC}^{n}$ the equality $L\left(e^{z \xi}\right)=M\left(e^{z 5}\right)$ holds, whence it follows that the functionals $L(v)$ and $M(v)$ coincide on the set of all linear combinations of exponentials. Since $\Omega$ is a Runge domain, it follows that $L(v)=M(v)$ for any function $\boldsymbol{v}(\zeta) \in \mathcal{O}(\Omega)$. In particular, setting $\boldsymbol{v}(\zeta)=A(\zeta) e^{z \zeta}$, we obtain the equality

$$
L\left(A(\zeta) e^{z \xi}\right)=M\left(A(\zeta) e^{z^{\varepsilon}}\right)
$$

which by formulas (5.4) and (5.6) means that the definition of $A(D) u(z)$ does not depend on the form of representing $u(z)$. This is what was required.

In conclusion we shall show that the Runge condition is essential.
Counterexample. Let $\Omega=\mathrm{C}^{1} \backslash\{0\}, A(D)=I / D$. Obviously, the symbol $\mathrm{A}(\zeta)=1 / \zeta$ is analytic in $\Omega$. We shall show that the operator $A(D)$ is not single-valued in the space Expa $\left(\mathrm{C}_{z}^{1}\right)$. Indeed, for any $\lambda \neq 0$ we have by Cauchy's formula

$$
e^{\lambda z}=\frac{1}{2 \pi i} \int_{|\eta|=R} \frac{e^{\eta z}}{\eta-\lambda} d \eta, \quad R>|\lambda|,
$$

and hence, breaking the contour of integration into N sufficiently small parts, we find that

$$
\begin{equation*}
e^{\lambda z}=\sum_{j=0}^{N} \int_{F_{j}} \frac{e^{\eta z}}{\eta-\lambda} d \eta \equiv \sum_{j=0}^{N} e^{\lambda_{i}{ }^{z}} \varphi_{j}(z), \quad \lambda_{j} \in \Gamma_{j}, \tag{5.7}
\end{equation*}
$$

where

$$
\varphi_{j}(z)=\frac{1}{2 \pi i} \int_{\Gamma_{j}} \frac{e^{\left(\eta-\lambda_{j}\right)^{z}}}{\eta-\lambda} d \eta .
$$

Obviously, $\Gamma_{j}$ can be taken so small that $\left|\varphi_{j}(z)\right| \leqslant M \exp r|z|$, where $\mathrm{r}<|\lambda|, M>0$ are constants. Thus, formula (5.7) gives a representation of the fucntion $e^{\lambda z}$ in the space $\operatorname{Exp}_{a}\left(C_{z}^{1}\right)$ in the form (5.1).

In correspondence with the definition of $A(D) u(z)$ we have, on the one hand, [I/D] exp $\lambda z=\lambda^{-1} \exp \lambda z$. On the other hand, proceeding from (5.7), we find that

$$
\frac{I}{D} e^{\lambda z}=\frac{1}{2 \pi i} \int_{|\eta|=R} \frac{e^{\eta z} d \eta}{\eta(\eta-\lambda)}=\lambda^{-1}(\exp \lambda z-1)
$$

Thus, in the space $\operatorname{Expa}\left(C_{z}^{n}\right)$ if $\Omega$ is not a Runge domain the operator $A(D)$, generally speaking, may be multivalued.

In conclusion we note that an analogous representation holds for $z^{n}, n=0,1, \ldots$, i.e., $z^{n} \in \operatorname{Exps}\left(\mathbf{C}_{z}^{1}\right), \Omega=\mathbf{C}^{1} \backslash\{0\}$, and $[I / D] z^{n}=z^{n+1} /(n+1)$.

## 6. Exponential Functionals

Definition 6.1. A continuous linear functional on the space $\operatorname{Exp}_{g}\left(\mathrm{C}_{z}^{n}\right)$ is called an exponential functional.

The space of all exponential functional we denote by Exps $\left(\mathrm{C}_{2}^{n}\right)$ and call the space of exponential functionals associated with the domain $\Omega$.

Example 1. $\delta(z)$ is obviously an exponential functional for any domain $\Omega$.
Example 2. Let $A(\xi) \in \mathcal{O}^{\prime}(\Omega)$. Then $h(z)=A(-D) \delta(z)\left(-D=\left(-\partial / \partial z_{1}, \ldots,-\partial / \partial z_{n}\right)\right)$ is an exponential functional acting on $v(z) \operatorname{Exp}_{s}\left(C_{z}^{n}\right)$ according to the formula

$$
\langle h(z), v(z)\rangle \equiv\langle A(-D) \delta(z), v(z)\rangle \stackrel{\text { def }}{=}\langle\delta(z), A(D) v(z)\rangle
$$

We shall show that Example 2 exhausts all exponential functionals.
$\frac{\text { THEOREM } 6.1 \text {. }}{=\mathrm{A}(-\mathrm{D}) \delta(\mathrm{z}) \text {. }}$ Let $h(z) \in \operatorname{Exp}_{s}^{\prime}\left(\mathrm{C}_{z}^{7}\right)$. Then there exists a unique function $A(5) \in O(\Omega)$ such that $h(z)=A(-D) \delta(z)$.

Proof. We set $A(\zeta) \equiv\langle h(z), \exp \zeta z\rangle, \zeta \epsilon \Omega$. Obviously, $A(\zeta) \in O(\Omega)$, and it is clear that

$$
\langle A(-D) \delta(z), \exp \zeta z\rangle \stackrel{\text { def }}{=}\langle\delta(z), A(D) \exp \zeta z\rangle=A(\zeta)
$$

i.e., the action of $h(z)$ coincides with the action of the functional $A(-D) \delta(z)$ on functions $\exp \zeta z$, $\zeta$ es.

From the density lemma (Sec. 3) we conclude that the functionals $h(z)$ and $A(-D) \delta(z)$ are equal as exponential functionals. The uniqueness of this representation is obvious. The theorem is proved.

Example 3. We consider the exponential functional $\mathscr{E}(z)=\exp \left(a D^{2}\right) \delta(z)$, where $a \in C^{n}$ is a parameter, and $a D^{2}=a_{1} D_{1}^{2}+\cdots+a_{n} D_{n}^{2}$. It can be shown (cf. [11, p. 110]) that for any function

